skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lyons, John_L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. First-principles calculations of defects and electron–phonon interactions play a critical role in the design and optimization of materials for electronic and optoelectronic devices. The late Audrius Alkauskas made seminal contributions to developing rigorous first-principles methodologies for the computation of defects and electron–phonon interactions, especially in the context of understanding the fundamental mechanisms of carrier recombination in semiconductors. Alkauskas was also a pioneer in the field of quantum defects, helping to build a first-principles understanding of the prototype nitrogen-vacancy center in diamond, as well as identifying novel defects. Here, we describe the important contributions made by Alkauskas and his collaborators and outline fruitful research directions that Alkauskas would have been keen to pursue. Audrius Alkauskas’ scientific achievements and insights highlighted in this article will inspire and guide future developments and advances in the field. 
    more » « less
  2. The ability to achieve highly resistive beta-phase gallium oxide (β-Ga2O3) layers and substrates is critical for β-Ga2O3 high voltage and RF devices. To date, the most common approach involves doping with iron (Fe), which generates a moderately deep acceptor-like defect state located at EC-0.8 eV in the β-Ga2O3 bandgap. Recently, there has been growing interest in alternative acceptors, such as magnesium (Mg) and nitrogen (N), due to their predicted deeper energy levels, which could avoid inadvertent charge modulation during device operation. In this work, a systematic study that makes direct correlations between the introduction of N using ion implantation and the observation of a newly observed deep level at EC-2.9 eV detected by deep-level optical spectroscopy (DLOS) is presented. The concentration of this state displayed a monotonic dependence with N concentration over a range of implant conditions, as confirmed by secondary ion mass spectrometry (SIMS). With a near 1:1 match in absolute N and EC-2.9 eV trap concentrations from SIMS and DLOS, respectively, which also matched the measured removal of free electrons from capacitance-voltage studies, this indicates that N contributes a very efficiently incorporated compensating defect. Density functional theory calculations confirm the assignment of this state to be an N (0/−1) acceptor with a configuration of N occupying the oxygen site III [NO(III)]. The near ideal efficiency for this state to compensate free electrons and its location toward the midgap region of the β-Ga2O3 bandgap demonstrates the potential of N doping as a promising approach for producing semi-insulating β-Ga2O3. 
    more » « less
  3. Gallium oxide when doped with Mg becomes semi-insulating and can be useful for power electronic devices. The present work investigates optical transitions of neutral Mg (MgGa0) using photoinduced electron paramagnetic resonance spectroscopy, a variation of the traditional optical absorption. Steady-state and time-dependent measurements are carried out at 130 K by illuminating the samples with photon energies from 0.7 to 4.4 eV. Interpretation of the data using a model that incorporates electron–phonon coupling yields a defect transition level that is consistent with the MgGa−/0 level obtained from hybrid density functional theory calculations. We conclude that the neutral to negative transition of MgGa that we observe involves an electron transition from the valence band to the defect, and the MgGa−/0 level is located 1.2 eV above the valence band maximum, with a relaxation energy of 1.3 eV. 
    more » « less